Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury
نویسندگان
چکیده
Recovery from serious neurological injury requires substantial rewiring of neural circuits. Precisely-timed electrical stimulation could be used to restore corrective feedback mechanisms and promote adaptive plasticity after neurological insult, such as spinal cord injury (SCI) or stroke. This study provides the first evidence that closed-loop vagus nerve stimulation (CLV) based on the synaptic eligibility trace leads to dramatic recovery from the most common forms of SCI. The addition of CLV to rehabilitation promoted substantially more recovery of forelimb function compared to rehabilitation alone following chronic unilateral or bilateral cervical SCI in a rat model. Triggering stimulation on the most successful movements is critical to maximize recovery. CLV enhances recovery by strengthening synaptic connectivity from remaining motor networks to the grasping muscles in the forelimb. The benefits of CLV persist long after the end of stimulation because connectivity in critical neural circuits has been restored.
منابع مشابه
Neuroprosthetic system to restore locomotion after neuromotor disorder
English Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with Spinal Cord Injury (SCI) and Parkinson disease. Stimulation parameters are tuned manually and remain constant during motor execution which is suboptimal to mediate maximum therapeutic effects. Here, I present a novel neuroprosthetic system that enabled adaptive changes of neuromodulat...
متن کاملClosed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury.
Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion...
متن کاملSensorimotor integration in the moving spinal cord
1 A closed-loop approach to sensorimotor behaviors.................................p.9 1.1. Defining sensorimotor behaviors 1.1.1. Eliciting sensory input 1.1.2. Measuring motor output 1.2. Modulating sensorimotor behaviors 1.2.1. Sensory feedback 1.2.2. Neuromodulation 1.3. Modeling sensorimotor behaviors 1.3.1. Behavioral computations 1.3.2. Circuits computations 2 An open-loop access: sensor...
متن کاملClosed-loop control of spinal cord stimulation to restore hand function after paralysis
As yet, no cure exists for upper-limb paralysis resulting from the damage to motor pathways after spinal cord injury or stroke. Recently, neural activity from the motor cortex of paralyzed individuals has been used to control the movements of a robot arm but restoring function to patients' actual limbs remains a considerable challenge. Previously we have shown that electrical stimulation of the...
متن کاملFunctional electrical stimulation control of standing and stepping after spinal cord injury: a review of technical characteristics.
Objectives. To investigate the different approaches in the field of functional electrical stimulation (FES) control of gait and address fundamental perquisites to enable FES walking systems to become safer, more practical, and therefore clinically efficacious. Design. Systematic review was conducted from electronic data bases up to March 2008. Studies with innovative control strategies were hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2018